research

The origin of the eccentricity of the hot Jupiter in CI Tau

Abstract

Following the recent discovery of the first radial velocity planet in a star still possessing a protoplanetary disc (CI Tau), we examine the origin of the planet's eccentricity (e 0.3\sim 0.3). We show through long timescale (10510^5 orbits) simulations that the planetary eccentricity can be pumped by the disc, even when its local surface density is well below the threshold previously derived from short timescale integrations. We show that the disc may be able to excite the planet's orbital eccentricity in << a Myr for the system parameters of CI Tau. We also perform two planet scattering experiments and show that alternatively the observed planet may plausibly have acquired its eccentricity through dynamical scattering of a migrating lower mass planet, which has either been ejected from the system or swallowed by the central star. In the latter case the present location and eccentricity of the observed planet can be recovered if it was previously stalled within the disc's magnetospheric cavity.This work has been supported by the DISCSIM project, grant agreement 341137 funded by the European Research Council under ERC-2013-ADG, and from STFC through grant ST/L000636/1. This work used the DIRAC Shared Memory Processing and Data Analytic systems, both at the University of Cambridge and operated, respectively, by the COSMOS Project at the Department of Applied Mathematics and Theoretical Physics and the Cambridge High Performance Computing Service, on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grants ST/J005673/1 and ST/K001590/1, STFC capital grants ST/H008586/1, ST/H008861/1 and ST/H00887X/1, STFC DiRAC Operations grant ST/K00333X/1, and STFC DiRAC Operations grant ST/K00333X/1. DiRAC is part of the National E-Infrastructure.This is the final version of the article. It first appeared from Oxford University Press via https://doi.org/10.1093/mnrasl/slw18

    Similar works