Irrigation canals have a series structure which is generally used to design multivariable controllers based on the aggregation of decentralized monovariable controllers. SISO controllers are designed for each canal pool, assuming that the interactions will not destabilize the overall system. It is shown that, when the canal pools are controlled using the discharge at one boundary, the multivariable decentralized control structure is stable if and only if the SISO controllers are stable. The performance of the multivariable system is also investigated, and it is shown that the interactions decrease the overall performance of the controlled system. This loss of performance can be reduced by using a feedforward controller. Experimental results show the effectiveness of the method