CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
M3 muscarinic acetylcholine receptor facilitates the endocytosis of mu opioid receptor mediated by morphine independently of the formation of heteromeric complexes
Authors
Elisa Alvarez-Curto
Juan Lopez-Gimenez
Graeme Milligan
Publication date
11 April 2017
Publisher
'Elsevier BV'
Doi
Abstract
Morphine inefficiency to induce the internalization of mu opioid (MOP) receptors observed in numerous experimental models constitutes a paradigm of G-protein coupled receptor (GPCR) functional selectivity. We recently described that activation of Gαq/11 proteins through 5-HT2A serotonin receptors co-expressed in the same cells facilitates MOP receptor endocytosis promoted by morphine. In order to explore whether a different Gαq/11 coupled GPCR would emulate this effect, a double stable Flp-In T-REx HEK293 cell line permanently expressing MOP-YFP receptors along with FLAG-M3-Cerulean receptors expressed in an inducible manner was generated. Fluorescence microscopy examination of these cells revealed a co-distribution of both receptors mainly compartmentalized in plasma membrane. Concurrent stimulation with carbachol and morphine promoted MOP receptor internalization, desensitization and down-regulation and this facilitation was not dependent on PKC activation. Co-immunoprecipitation experiments demonstrated that FLAG-M3-Cerulean/MOP-YFP receptors interact forming heteromeric complexes in a time depending manner, i.e. the strongest interaction was detected after 96h of FLAG-M3-Cerulean induced expression. Under these experimental conditions, treatment of cells with carbachol plus morphine resulted in the internalization of both receptors within separated endocytic vesicles as visualized by confocal microscopy. This trafficking segregation observed for FLAG-M3-Cerulean and MOP-YFP receptors upon agonist stimulation suggests that this protein-protein interaction presents temporal and dynamic properties. Moreover, MOP-YFP receptor internalization facilitated by FLAG-M3-Cerulean receptors is independent of the constitution of heteromeric complexes. [Abstract copyright: Copyright © 2017. Published by Elsevier Inc.
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Digital.CSIC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:digital.csic.es:10261/1645...
Last time updated on 11/06/2018
Enlighten: Publications
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.gla.ac.uk:140300
Last time updated on 09/04/2020
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.cellsig.2...
Last time updated on 07/01/2021
Enlighten
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.gla.ac.uk:140300
Last time updated on 17/05/2017