research

On subshift presentations

Abstract

We consider partitioned graphs, by which we mean finite strongly connected directed graphs with a partitioned edge set E=EE+ {\mathcal E} ={\mathcal E}^- \cup{\mathcal E}^+. With additionally given a relation R\mathcal R between the edges in E{\mathcal E}^- and the edges in E+\mathcal E^+ , and denoting the vertex set of the graph by P{\frak P}, we speak of an an R{\mathcal R}-graph GR(P,E,E+){\mathcal G}_{\mathcal R}({\frak P},{\mathcal E}^-,{\mathcal E}^+) . From R{\mathcal R}-graphs GR(P,E,E+){\mathcal G}_{\mathcal R}({\frak P},{\mathcal E}^-,{\mathcal E}^+) we construct semigroups (with zero) SR(P,E,E+){\mathcal S}_{\mathcal R}({\frak P}, {\mathcal E}^-,{\mathcal E}^+) that we call R{\mathcal R}-graph semigroups. We describe a method of presenting subshifts by means of suitably structured labelled directed graphs (V,Σ,λ)({\mathcal V}, \Sigma,\lambda) with vertex set V{\mathcal V}, edge set Σ\Sigma, and a label map that asigns to the edges in Σ\Sigma labels in an R{\mathcal R}-graph semigroup SR(P,E,E){\mathcal S}_{\mathcal R}({\frak P}, {\mathcal E}^-, {\mathcal E}^-). We call the presented subshift an SR(P,E,E){\mathcal S}_{\mathcal R}({\frak P}, {\mathcal E}^-, {\mathcal E}^-)-presentation. We introduce a Property (B)(B) and a Property (c), tof subshifts, and we introduce a notion of strong instantaneity. Under an assumption on the structure of the R{\mathcal R}-graphs GR(P,E,E){\mathcal G}_{\mathcal R}({\frak P},{\mathcal E}^-, {\mathcal E}^-) we show for strongly instantaneous subshifts with Property (A)(A) and associated semigroup SR(P,E,E){\mathcal S}_{\mathcal R}({\frak P},{\mathcal E}^-,{\mathcal E}^-), that Properties (B)(B) and (c) are necessary and sufficient for the existence of an SR(P,E,E){\mathcal S}_{\mathcal R}({\frak P}, {\mathcal E}^-,{\mathcal E}^-)-presentation, to which the subshift is topologically conjugate,Comment: 33 page

    Similar works

    Full text

    thumbnail-image

    Available Versions