research

Decoherence effects on weak value measurements in double quantum dots

Abstract

We study the effect of decoherence on a weak value measurement in a paradigm system consisting of a double quantum dot continuously measured by a quantum point contact. Fluctuations of the parameters controlling the dot state induce decoherence. We find that, for measurements longer than the decoherence time, weak values are always reduced within the range of the eigenvalues of the measured observable. For measurements at shorter time scales, the measured weak value strongly depends on the interplay between the decoherence dynamics of the system and the detector backaction. In particular, depending on the postselected state and the strength of the decoherence, a more frequent classical readout of the detector might lead to an enhancement of weak values.Comment: published version, new figures and comments added; 15 pages, 7 figure

    Similar works