Abstract

International audienceThe ocean fine scale (from the mesoscale to the submesoscale) is susceptible to impact air-sea exchange and has an integral effect on the large scale atmosphere and ocean dynamics. Many recent advances in understanding underlying processes have been obtained from modeling efforts and only few in-situ observational studies exist one of them being the EUREC4A-OA/ATOMIC campaign that was added to the EUREC4A atmospheric campaign. This experiment took place in January-February 2020 in the Northwest Tropical Atlantic Ocean with the aim to collect synchronized ocean and atmosphere data to improve our understanding of the role of fine scale processes in the internal ocean dynamics and air-sea interaction.Four oceanographic vessels, coordinated with air-borne observations and autonomous ocean platforms (underwater gliders, Saildrones, drifters), simultaneously acquired ocean and atmosphere data east of the island of Barbados and further south, up to the border of French Giuana. This way, ocean and atmospheric data was acquired in two contrasting regions: (1) the Trade wind region and (2) a region filled with mesoscale eddies. Operations allowed investigating upper ocean processes from small to mesoscale and from sub-diurnal to monthly.A variety of mesoscale eddies were crossed with diverse characteristics, ranging from shallow cyclonic and anticyclonic eddies to the deep reaching structures. Some of these eddies, and in particular North Brazil Rings, have been previously observed and described in dedicated oceanographic experiments. Nonetheless, the EUREC4A-OA/ATOMIC campaign brings in new details about the vertical structure, the dynamics and the potential impact on air-sea interactions of these mesoscale features.With the various observing platforms it was possible to sample the upper-ocean in great detail, resolving frontal scales and stratification. For example, the remnants of the Amazon plume, flowing northward along the shelf-break and being advected far offshore though NBC rings, create a rich variety of submesoscale fronts and a strong barrier layer impacting air-sea exchange of heat and momentum. The ongoing analyses on the ocean dynamics regional and local structures and specifics of air-sea interaction will be highlighted in this presentation

    Similar works