Most neighboring stars are still detected as point sources and are beyond the
angular resolution reach of current observatories. Methods to improve our
understanding of stars at high angular resolution are investigated. Air
Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us
to increase our understanding of the circumstellar environment of a particular
system. When used as optical intensity interferometers, future ACT arrays will
allow us to detect stars as extended objects and image their surfaces at high
angular resolution.
Optical stellar intensity interferometry (SII) with ACT arrays, composed of
nearly 100 telescopes, will provide means to measure fundamental stellar
parameters and also open the possibility of model-independent imaging. A data
analysis algorithm is developed and permits the reconstruction of high angular
resolution images from simulated SII data. The capabilities and limitations of
future ACT arrays used for high angular resolution imaging are investigated via
Monte-Carlo simulations. Simple stellar objects as well as stellar surfaces
with localized hot or cool regions can be accurately imaged.
Finally, experimental efforts to measure intensity correlations are
expounded. The functionality of analog and digital correlators is demonstrated.
Intensity correlations have been measured for a simulated star emitting
pseudo-thermal light, resulting in angular diameter measurements. The StarBase
observatory, consisting of a pair of 3 m telescopes separated by 23 m, is
described.Comment: PhD dissertatio