We study the two-dimensional repulsive Hubbard model by functional RG
methods, using our recently proposed channel decomposition of the interaction
vertex. The main technical advance of this work is that we calculate the full
Matsubara frequency dependence of the self-energy and the interaction vertex in
the whole frequency range without simplifying assumptions on its functional
form, and that the effects of the self-energy are fully taken into account in
the equations for the flow of the two-body vertex function. At Van Hove
filling, we find that the Fermi surface deformations remain small at fixed
particle density and have a minor impact on the structure of the interaction
vertex. The frequency dependence of the self-energy, however, turns out to be
important, especially at a transition from ferromagnetism to d-wave
superconductivity. We determine non-Fermi-liquid exponents at this transition
point.Comment: 48 pages, 18 figure