research

Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization

Abstract

We propose a decomposition method for the solution of a dynamic portfolio optimization problem which fits the formulation of a multistage stochastic programming problem. The method allows to obtain time and nodal decomposition of the problem in its arborescent formulation applying a discrete version of Pontryagin Maximum Principle. The solution of the decomposed problems is coordinated through a fixed- point weighted iterative scheme. The introduction of an optimization step in the choice of the weights at each iteration allows to solve the original problem in a very efficient way.Stochastic programming, Discrete time optimal control problem, Iterative scheme, Portfolio optimization

    Similar works