Identification of glycosyltransferases involved in cell wall synthesis of wheat endosperm.

Abstract

International audiencePlant cell walls are complex structures critical for plant fitness and valuable for human nutrition as dietary fiber and for industrial uses such as biofuel production. The cell wall polysaccharides in wheat endosperm consist of two major polymers, arabinoxylans and beta-glucans, as well as other minor components. Most of these polysaccharides are synthesized in the Golgi apparatus but the mechanisms underlying their synthesis have yet to be fully elucidated and only a few of the enzymes involved have been characterized. To identify actors involved in the wheat endosperm cell wall formation, we used a subcellular fractionation strategy to isolate Golgi-enriched fractions from endosperm harvested during active cell wall deposition. The proteins extracted from these Golgi-enriched fractions were analyzed by LC-MS/MS. We report the identification of 1135 proteins among which 64 glycosyltransferases distributed in 17 families. Their potential function in cell wall synthesis is discussed. In addition, we identified 63 glycosylhydrolases, some of which may be involved in cell wall remodeling. Several glycosyltransferases were validated by showing that when expressed as fusion proteins with a fluorescent reporter, they indeed accumulate in the Golgi apparatus. Our results provide new candidates potentially involved in cell wall biogenesis in wheat endosperm

    Similar works

    Full text

    thumbnail-image

    Available Versions