Abstract

We report ultrafast quasiparticle (QP) dynamics and coherent acoustic phonons in undoped CaFe_2As_2 iron pnictide single crystals exhibiting spin-density wave (SDW) and concurrent structural phase transition at temperature TSDW ~ 165 K using femtosecond time-resolved pump-probe spectroscopy. The contributions in transient differential reflectivity arising from exponentially decaying QP relaxation and oscillatory coherent acoustic phonon mode show large variations in the vicinity of T_SDW. From the temperature-dependence of the QP recombination dynamics in the SDW phase, we evaluate a BCS-like temperature dependent charge gap with its zero-temperature value of ~(1.6+/-0.2)k_BT_SDW, whereas, much above T_SDW, an electron-phonon coupling constant of ~0.13 has been estimated from the linear temperature-dependence of the QP relaxation time. The long-wavelength coherent acoustic phonons with typical time-period of ~100 ps have been analyzed in the light of propagating strain pulse model providing important results for the optical constants, sounds velocity and the elastic modulus of the crystal in the whole temperature range of 3 K to 300 K.Comment: Revised version (to appear as Full Paper in Journal of Physical Society of Japan (2013)); http://jpsj.ipap.jp/link?JPSJ/82/044715

    Similar works