In quantum chemistry, the price paid by all known efficient model chemistries
is either the truncation of the Hilbert space or uncontrolled approximations.
Theoretical computer science suggests that these restrictions are not mere
shortcomings of the algorithm designers and programmers but could stem from the
inherent difficulty of simulating quantum systems. Extensions of computer
science and information processing exploiting quantum mechanics has led to new
ways of understanding the ultimate limitations of computational power.
Interestingly, this perspective helps us understand widely used model
chemistries in a new light. In this article, the fundamentals of computational
complexity will be reviewed and motivated from the vantage point of chemistry.
Then recent results from the computational complexity literature regarding
common model chemistries including Hartree-Fock and density functional theory
are discussed.Comment: 14 pages, 2 figures, 1 table. Comments welcom