Recent developments in high-contrast imaging techniques now make possible
both imaging and spectroscopy of planets around nearby stars. We present the
conceptual design of the Coronagraphic High Angular Resolution Imaging
Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph
(IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide
spectral information for 140x140 spatial elements over a 1.75 arcsecs x 1.75
arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda =
0.9 - 2.5 microns) and provide a spectral resolution of R = 14, 33, and 65 in
three separate observing modes. Taking advantage of the adaptive optics systems
and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS
will provide sufficient contrast to obtain spectra of young self-luminous
Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected
to have first light by the end of 2015. We report here on the current
conceptual design of CHARIS and the design challenges