[Abridged] The transmission of light through a planetary atmosphere can be
studied as a function of altitude and wavelength using stellar or solar
occultations, giving often unique constraints on the atmospheric composition.
For exoplanets, a transit yields a limb-integrated, wavelength-dependent
transmission spectrum of an atmosphere. When scattering haze and/or cloud
particles are present in the planetary atmosphere, the amount of transmitted
flux not only depends on the total optical thickness of the slant light path
that is probed, but also on the amount of forward-scattering by the scattering
particles. Here, we present results of calculations with a three-dimensional
Monte Carlo code that simulates the transmitted flux during occultations or
transits. For isotropically scattering particles, like gas molecules, the
transmitted flux appears to be well-described by the total atmospheric optical
thickness. Strongly forward-scattering particles, however, such as commonly
found in atmospheres of Solar System planets, can increase the transmitted flux
significantly. For exoplanets, such added flux can decrease the apparent radius
of the planet by several scale heights, which is comparable to predicted and
measured features in exoplanet transit spectra. We performed detailed
calculations for Titan's atmosphere between 2.0 and 2.8 micron and show that
haze and gas abundances will be underestimated by about 8% if
forward-scattering is ignored in the retrievals. At shorter wavelengths, errors
in the gas and haze abundances and in the spectral slope of the haze particles
can be several tens of percent, also for other Solar System planetary
atmospheres. We also find that the contribution of forward-scattering can be
fairly well described by modelling the atmosphere as a plane-parallel slab.Comment: Icarus, accepted for publicatio