research

Similarity transformations for the two-dimensional, unsteady, stream-function equation

Abstract

The methods described by Bluman & Cole (1974) are used to derive the infinitesimals of the general invariance group of the unsteady, two-dimensional, stream-function equation for the case where the kinematic viscosity v is equal to a constant and the case where v = 0. The infinitesimals in each case involve ten independent parameters, seven of which appear explicitly and three of which are contained implicitly in three arbitrary functions of time. The various finite groups and similarity transformations which may be derived from the infinitesimals are discussed through examples. Two of the arbitrary functions of time are non-trivial and represent invariance of the stream-function equation under a transformation to a co-ordinate system which moves in a non-uniform irrotational fashion. A general similarity form is derived for which the equations dx/dt = u(x, y, t) and dy/dt = v(x, y, t) for the particle paths may be reduced to an autonomous system. This form is general enough to suggest the hypothesis that, under certain restrictions, the entrainment processes of unsteady flows dominated by two-dimensional large-scale motions may be displayed diagrammatically on a phase-plane plot of particle trajectories

    Similar works