unknown

Genomic Regulatory Networks, Reduction Mappings and Control

Abstract

All high-level living organisms are made of small cell units, containing DNA, RNA, genes, proteins etc. Genes are important components of the cells and it is necessary to understand the inter-gene relations, in order to comprehend, predict and ultimately intervene in the cells’ dynamics. Genetic regulatory networks (GRN) represent the gene interactions that dictate the cell behavior. Translational genomics aims to mathematically model GRNs and one of the main goals is to alter the networks’ behavior away from undesirable phenotypes such as cancer. The mathematical framework that has been often used for modeling GRNs is the probabilistic Boolean network (PBN), which is a collection of constituent Boolean networks with perturbation, BNp. This dissertation uses BNps, to model gene regulatory networks with an intent of designing stationary control policies (CP) for the networks to shift their dynamics toward more desirable states. Markov Chains (MC) are used to represent the PBNs and stochastic control has been employed to find stationary control policies to affect steady-state distribution of the MC. However, as the number of genes increases, it becomes computationally burdensome, or even infeasible, to derive optimal or greedy intervention policies. This dissertation considers the problem of modeling and intervening in large GRNs. To overcome the computational challenges associated with large networks, two approaches are proposed: first, a reduction mapping that deletes genes from the network; and second, a greedy control policy that can be directly designed on large networks. Simulation results show that these methods achieve the goal of controlling large networks by shifting the steady-state distribution of the networks toward more desirable states. Furthermore, a new inference method is used to derive a large 17-gene Boolean network from microarray experiments on gastrointestinal cancer samples. The new algorithm has similarities to a previously developed well-known inference method, which uses seed genes to grow subnetworks, out of a large network; however, it has major differences with that algorithm. Most importantly, the objective of the new algorithm is to infer a network from a seed gene with an intention to derive the Gene Activity Profile toward more desirable phenotypes. The newly introduced reduction mappings approach is used to delete genes from the 17-gene GRN and when the network is small enough, an intervention policy is designed for the reduced network and induced back to the original network. In another experiment, the greedy control policy approach is used to directly design an intervention policy on the large 17-gene network to beneficially change the long-run behavior of the network. Finally, a novel algorithm is developed for selecting only non-isomorphic BNs, while generating synthetic networks, using a method that generates synthetic BNs, with a prescribed set of attractors. The goal of the new method described in this dissertation is to discard isomorphic networks

    Similar works