research

Electron-dependent thermoelectric properties in Si/Si_(1_x)Ge_(x) heterostructures and Si_(1-x)Ge_(x) alloys from first-principles

Abstract

Unlike phononic thermal conductivity (which is shown in the literature to be reduced due to alloying and has a nearly constant value over a range of compositional variations), electron-dependent thermoelectric properties are shown here, from first-principles, to vary nonlinearly with composition. Of the Si/Si_(1_x)Ge_(x) systems considered, the maximum thermopower observed, which is 10% higher than that of crystalline Si, is obtained for a Si_(0.875)Ge_(0.125) alloy. Also, heterostructuring is shown to reduce thermopower, electrical conductivity, and electron thermal conductivity. Additionally, neither Lorenz number nor Seebeck coefficient shows oscillations for heterostructures, regardless of electron/hole energies, contradicting the conclusions obtained with miniband approximations

    Similar works