Systemic administration of lipopolysaccharide in laying hens stimulates antimicrobial properties of egg white against Staphylococcus aureus

Abstract

International audienceThe natural protective system of eggs relies on egg yolk immunoglobulins and on antimicrobial proteins/peptides mainly concentrated in the egg white. There is much evidence concerning the specific stimulation of immunoglobulins by antigens but to date, the influence of the hen milieu on the regulation of the egg innate molecular immunity has not been established. To explore the hypothesis of modulation in egg antimicrobial molecules, laying hens were immune-challenged with intravenous injections of Salmonella enterica Enteritidis lipopolysaccharide (LPS) at 24 h intervals. Eggs of the control and LPS groups were collected over a period of 21 days following the first LPS injection and the egg white activities against Staphylococcus aureus and Escherichia coli were assessed. The increase in egg white anti-S. aureus activity reached 20.9% and 23.4% (p<0.05) respectively on days 5 and 6 after the first LPS injection. Anti-E. coli activity increased moderately only on days 9 and 15 after the LPS treatment. To explore the origin of these increased antimicrobial activities, we analyzed the lysozyme and proteases inhibiting (anti-trypsin and anti-chymotrypsin) activities and the pH variations of egg whites. We recorded no significant variations between the two experimental groups for these potential modulating factors. Finally, using RT-qPCR we studied the expression of several genes coding for antimicrobial proteins and peptides involved in the immune response in the infundibulum and the magnum, Out of the 11 genes, only TLR4 in the magnum and ovocalyxin-36 in infundibulum were over-expressed respectively 24h and 8 days after the first LPS injection. The other candidate genes showed similar or down regulated expression in the LPS group as compared to the control especially during the first 24h. Our results suggest that the hen enhances the albumen antimicrobial activity of its eggs when exposed to immune stimulations or infections. This could be an attempt to preventively reinforce the protection of the embryo with nonspecific antimicrobial agents in addition to the specific antibodies exported to the egg. The origin of this stimulation of egg molecular immunity remains to be characterized amongst the numerous novel egg proteins recently identified

    Similar works

    Full text

    thumbnail-image

    Available Versions