We modify the approach of Burton and Toland [Comm. Pure Appl. Math. (2011)]
to show the existence of periodic surface water waves with vorticity in order
that it becomes suited to a stability analysis. This is achieved by enlarging
the function space to a class of stream functions that do not correspond
necessarily to travelling profiles. In particular, for smooth profiles and
smooth stream functions, the normal component of the velocity field at the free
boundary is not required a priori to vanish in some Galilean coordinate system.
Travelling periodic waves are obtained by a direct minimisation of a functional
that corresponds to the total energy and that is therefore preserved by the
time-dependent evolutionary problem (this minimisation appears in Burton and
Toland after a first maximisation). In addition, we not only use the
circulation along the upper boundary as a constraint, but also the total
horizontal impulse (the velocity becoming a Lagrange multiplier). This allows
us to preclude parallel flows by choosing appropriately the values of these two
constraints and the sign of the vorticity. By stability, we mean conditional
energetic stability of the set of minimizers as a whole, the perturbations
being spatially periodic of given period.Comment: NoDEA Nonlinear Differential Equations and Applications, to appea