Algorithms on Minimizing the Maximum Sensor Movement for Barrier Coverage of a Linear Domain


In this paper, we study the problem of moving nn sensors on a line to form a barrier coverage of a specified segment of the line such that the maximum moving distance of the sensors is minimized. Previously, it was an open question whether this problem on sensors with arbitrary sensing ranges is solvable in polynomial time. We settle this open question positively by giving an O(n2logn)O(n^2 \log n) time algorithm. For the special case when all sensors have the same-size sensing range, the previously best solution takes O(n2)O(n^2) time. We present an O(nlogn)O(n \log n) time algorithm for this case; further, if all sensors are initially located on the coverage segment, our algorithm takes O(n)O(n) time. Also, we extend our techniques to the cycle version of the problem where the barrier coverage is for a simple cycle and the sensors are allowed to move only along the cycle. For sensors with the same-size sensing range, we solve the cycle version in O(n)O(n) time, improving the previously best O(n2)O(n^2) time solution.Comment: This version corrected an error in the proof of Lemma 2 in the previous version and the version published in DCG 2013. Lemma 2 is for proving the correctness of an algorithm (see the footnote of Page 9 for why the previous proof is incorrect). Everything else of the paper does not change. All algorithms in the paper are exactly the same as before and their time complexities do not change eithe

    Similar works

    Full text


    Available Versions