research

An approach to anomalous diffusion in the n-dimensional space generated by a self-similar Laplacian

Abstract

We analyze a quasi-continuous linear chain with self-similar distribution of harmonic interparticle springs as recently introduced for one dimension (Michelitsch et al., Phys. Rev. E 80, 011135 (2009)). We define a continuum limit for one dimension and generalize it to n=1,2,3,..n=1,2,3,.. dimensions of the physical space. Application of Hamilton's (variational) principle defines then a self-similar and as consequence non-local Laplacian operator for the nn-dimensional space where we proof its ellipticity and its accordance (up to a strictly positive prefactor) with the fractional Laplacian (Δ)α2-(-\Delta)^\frac{\alpha}{2}. By employing this Laplacian we establish a Fokker Planck diffusion equation: We show that this Laplacian generates spatially isotropic L\'evi stable distributions which correspond to L\'evi flights in nn-dimensions. In the limit of large scaled times t/rα>>1\sim t/r^{\alpha} >>1 the obtained distributions exhibit an algebraic decay tnα0\sim t^{-\frac{n}{\alpha}} \rightarrow 0 independent from the initial distribution and spacepoint. This universal scaling depends only on the ratio n/αn/\alpha of the dimension nn of the physical space and the L\'evi parameter α\alpha.Comment: Submitted manuscrip

    Similar works

    Full text

    thumbnail-image

    Available Versions