This paper is a continuation of the work on the spectral problem of Harper
operator using algebraic geometry. We continue to discuss the local monodromy
of algebraic Fermi curves based on Picard-Lefschetz formula. The density of
states over approximating components of Fermi curves satisfies a Picard-Fuchs
equation. By the property of Landen transformation, the density of states has a
Lambert series as the quarter period. A q-expansion of the energy level can
be derived from a mirror map as in the B-model.Comment: v2, 13 pages, minor changes have been mad