slides

Specific shear viscosity in hot rotating systems of paired fermions

Abstract

The specific shear viscosity ηˉ\bar\eta of a classically rotating system of nucleons that interact via a monopole pairing interaction is calculated including the effects of thermal fluctuations and coupling to pair vibrations within the selfconsistent quasiparticle random-phase approximation. It is found that ηˉ\bar\eta increases with angular momentum MM at a given temperature TT. In medium and heavy systems, ηˉ\bar\eta decreases with increasing TT at TT\geq 2 MeV and this feature is not affected much by angular momentum. But in lighter systems (with the mass number AA\leq 20), ηˉ\bar\eta increases with TT at a value of MM close to the maximal value MmaxM_{max}, which is defined as the limiting angular momentum for each system. The values of ηˉ\bar\eta obtained within the schematic model as well as for systems with realistic single-particle energies are always larger than the universal lower-bound conjecture /(4πkB)\hbar/(4\pi k_B) up to TT=5 MeV.Comment: 19 pages, 7 figures, accepted for publication in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions