research

Topological Flat Bands from Dipolar Spin Systems

Abstract

We propose and analyze a physical system that naturally admits two-dimensional topological nearly flat bands. Our approach utilizes an array of three-level dipoles (effective S = 1 spins) driven by inhomogeneous electromagnetic fields. The dipolar interactions produce arbitrary uniform background gauge fields for an effective collection of conserved hardcore bosons, namely, the dressed spin-flips. These gauge fields result in topological band structures, whose bandgap can be larger than the corresponding bandwidth. Exact diagonalization of the full interacting Hamiltonian at half-filling reveals the existence of superfluid, crystalline, and supersolid phases. An experimental realization using either ultra-cold polar molecules or spins in the solid state is considered.Comment: 8 pages, 5 figures. V2: Added discussion of optical dressing - final version as published in Phys. Rev. Let

    Similar works