Effusion Cooling Plates for Combustor Liners: Experimental and Numerical Investigations on the Effect of Density Ratio

Abstract

AbstractEffusion cooling represents the state-of-the-art of liner cooling technology for modern combustors. The present paper describes experimental tests aiming at evaluating the cooling performance of a multi-perforated plate in real engine representative fluid- dynamic conditions. Adiabatic effectiveness maps were obtained following the mass transfer analogy by the use of Pressure Sensitive Paint. In addition, a CFD campaign was performed in order to benchmark the reliability in estimating the cooling performance of effusion cooling liners. In order to include anisotropic diffusion effects, the k − ω SST turbulence model was corrected considering a tensorial definition of the eddy viscosity with an algebraic correction to dope its stream-span components

    Similar works