Abstract

Centromeric chromatin – spindle microtubule interactions mediated by kinetochores drive chromosome segregation. We have developed a two-color fluorescence light microscopy method that measures average label separation, Delta, at < 5 nm accuracy — to elucidate the protein architecture of human metaphase kinetochores. Delta analysis, when correlated with tension states of spindle-attached sister kinetochore pairs, provided information on mechanical properties of protein linkages within kinetochores. Treatment with taxol—which suppresses microtubule dynamics, eliminates tension at kinetochores, and activates the spindle checkpoint—resulted in specific large-scale changes in kinetochore architecture. Cumulatively, Delta analysis revealed compliant linkages close to the centromeric chromatin, suggests a model for how the KMN (KNL1/Mis12 complex/Ndc80 complex) network provides microtubule attachment and generates pulling forces from depolymerization, and reveals architectural changes induced by taxol treatment. The methods described here should also be applicable to other intermediate-scale biological machines in cells

    Similar works