research

Completing circular codes in regular submonoids

Abstract

AbstractLet M be an arbitrary submonoid of the free monoid A∗, and let X⊆M be a variable length code (for short a code). X is weakly M-complete iff any word in M is a factor of some word in X∗ [J. Néraud, C. Selmi, Free monoid theory: Maximality and completeness in arbitrary submonoids, Internat. J. Algebra Comput. 13 (5) (2003) 507–516]. Given a regular submonoid M, and given an arbitrary code X⊆M, we are interested in the existence of a weakly M-complete code Xˆ that contains X. Actually, in [J. Néraud, Completing a code in a regular submonoid, in: Acts of MCU’2004, Lect. Notes Comput. Sci. 3354 (2005) 281–291; J. Néraud, Completing a code in a submonoid of finite rank, Fund. Inform. 74 (2006) 549–562], by presenting a general formula, we have established that, in any case, such a code Xˆ exists. In the present paper, we prove that any regular circular code X⊆M may be embedded into a weakly M-complete one iff the minimal automaton with behavior M has a synchronizing word. As a consequence of our result an extension of the famous theorem of Schützenberger is stated for regular circular codes in the framework of regular submonoids. We study also the behaviour of the subclass of uniformly synchronous codes in connection with these questions

    Similar works