research

Permeation of phloretin across bilayer lipid membranes monitored by dipole potential and microelectrode measurements

Abstract

AbstractThe transmembrane diffusion of phloretin across planar bilayer lipid membranes is studied under steady-state conditions. Diffusion restrictions and adsorption related effects are measured independently. The adsorption of aligned phloretin dipoles generates a change in the intrinsic dipole potential difference between the inner and outer leaflets of the lipid bilayer. It is monitored by capacitive current measurements carried out with a direct current (dc) bias. The variation of the intramembrane electric field indicates a saturation of the binding sites at the membrane interface. In contrast, pH profile measurements undertaken in the immediate membrane vicinity show a constant membrane permeability. If phloretin binding and transmembrane diffusion are treated as two competitive events rather than subsequent steps in the transport queue the contradictory results become explainable. A mathematical model is developed where it is assumed that diffusing phloretin molecules are randomly oriented, i.e., that they do not contribute to the intrinsic membrane potential. Only the dipoles adsorbing onto the membrane are oriented. Based on these theory the membrane permeability is calculated from the capacitive current data. It is found to agree very well with the permeability deduced from the microelectrode measurements

    Similar works