CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
The correction of ETV6/RUNX1 translocation in acute lymphocytic leukemia cells: a new gene targeting system by homologous recombination mechanism
Authors
M. Akbari
S. Ebrahimabadi
+3 more
T. Farazmandfar
M. Golalipour
M. Shahbazi
Publication date
1 January 2020
Publisher
Abstract
Regarding the uncertainty of the exact cause of the acute lymphocytic leukemia (ALL) caused by ETV6-RUNX1t(12;21) translocation, correcting genes of the ETV6 and RUNX1 in ETV6/RUNX1 fusion gene simultaneously on chromosome 12 may be effective in reducing leukemia malignancy. Thus, we designed an homologous recombination (HR) plasmid to target of the ETV6/RUNX1 fusion gene in the REH cell line containing the ETV6-RUNX1t(12;21) translocation. Cells were cultured and transfected by HR plasmid. The presence of the replacement cassette at specific location in the ETV6/RUNX1 fusion gene was verified by PCR and sequencing method. A quantitative gene expression assay was performed to evaluate changes in expression of ETV6, RUNX1, and ETV6/RUNX1 genes following editing. The cell viability was measured by trypan blue staining. The expression of the ETV6 gene was significantly increased in modified cells than unmodified cells by 10.9-fold. In contrast, the expression of the ETV6-RUNX1 fusion gene was significantly decreased in the modified cells compared with unmodified cells by 0.26-fold. The expression of the RUNX1 gene had no significant difference between modified and unmodified cells. The survival rate of edited cells was significantly decreased than unedited cells (p = 013). We designed a gene targeting system based on HR method to correct genes of ETV6 and RUNX1 simultaneously in ETV6/RUNX1 fusion gene on chromosome 12 containing ETV6-RUNX1t(12;21) translocation. The modification of this translocation may lead to reducing effects of the fusion gene�s damaging and the dosage compensation related to ETV6 and RUNX1 genes and subsequently reduce the effects of leukemia. This targeting system may open a window for treating leukemia as ex vivo. © 2019, Institute of Plant Genetics, Polish Academy of Sciences, Poznan
Similar works
Full text
Available Versions
Golestan University of Medical Sciences Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.goums.ac.ir:10513
Last time updated on 14/05/2020