Increasing Resistance to Azithromycin in Neisseria gonorrhoeae in Eastern Chinese Cities: Resistance Mechanisms and Genetic Diversity among Isolates from Nanjing
Azithromycin resistance (AZM-R) of Neisseria gonorrhoeae is emerging as a clinical and public health challenge. We determined molecular characteristics of recent AZM-R Nanjing gonococcal isolates and tracked the emergence of AZM-R isolates in eastern Chinese cities in recent years. A total of 384 N. gonorrhoeae isolates from Nanjing collected from 2013 to 2014 were tested for susceptibility to AZM and six additional antibiotics; all AZM-R strains were characterized genetically for resistance determinants by sequencing and were genotyped using N. gonorrhoeae multiantigen sequence typing (NG-MAST). Among the 384 isolates, 124 (32.3%) were AZM-R. High-level resistance (MIC, \u3e /=256 mg/liter) was present in 10.4% (40/384) of isolates, all of which possessed the A2143G mutation in all four 23S rRNA alleles. Low- to mid-level resistance (MIC, 1 to 64 mg/liter) was present in 21.9% (84/384) of isolates, 59.5% of which possessed the C2599T mutation in all four 23S rRNA alleles. The 124 AZM-R isolates were distributed in 71 different NG-MAST sequence types (STs). ST1866 was the most prevalent type in high-level AZM-R (HL-AZM-R) isolates (45% [18/40]). This study, together with previous reports, revealed that the prevalence of AZM-R in N. gonorrhoeae isolates in certain eastern Chinese cities has risen \u3e 4-fold (7% to 32%) from 2008 to 2014. The principal mechanisms of AZM resistance in recent Nanjing isolates were A2143G mutations (high-level resistance) and C2599T mutations (low- to mid-level resistance) in the 23S rRNA alleles. Characterization of NG-MAST STs and phylogenetic analysis indicated the genetic diversity of N. gonorrhoeae in Nanjing; however, ST1866 was the dominant genotype associated with HL-AZM-R isolates