Analysis of plasma viral RNA levels during acute dengue virus infection using quantitative competitor reverse transcription-polymerase chain reaction

Abstract

There is increasing recognition of the potential importance of viral burden in the pathogenesis of dengue hemorrhagic fever (DHF). There is little data available, however, describing the kinetics of viral replication in humans with natural dengue virus (DV) infection. Standard procedures for measuring titers of infectious virus in clinical specimens are either laborious or insensitive. We developed a method for measurement of DV RNA in plasma samples based on reverse transcription-polymerase chain reaction (RT-PCR) using a mutant RNA target as a competitor. This technique was reproducible and accurate for samples containing any of the four DV serotypes, and could be applied to samples containing as few as 250 copies of RNA per reaction. We examined plasma viral RNA levels in 80 children with acute DV infection; sequential plasma samples were tested in 34 of these children. Plasma viral RNA levels ranged as high as 10(9) RNA copies/ml, and correlated with titers of infectious virus measured in mosquitoes (r= 0.69). Plasma viral RNA levels fell rapidly during the last several days of the febrile period. We did not find a significant difference in maximal plasma viral RNA levels between children with DHF and children with dengue fever, but peak viral RNA levels were identified in only 16 subjects. We conclude that this quantitative RT-PCR method will be valuable for further studies of natural DV infections

    Similar works

    Full text

    thumbnail-image

    Available Versions