research

Mechanisms of Volatile Anesthetic-Induced Myocardial Protection

Abstract

Volatile anesthetics protect myocardium against reversible and irreversible ischemic injury. Experimental evidence from several in vitro and in vivo animal models demonstrates that volatile agents enhance the recovery of stunned myocardium and reduce the size of myocardial infarction after brief or prolonged coronary artery occlusion and reperfusion, respectively. This protective effect persists after the anesthetic has been discontinued, a phenomenon known as anesthetic-induced preconditioning (APC). Recent clinical data also demonstrates evidence of APC in patients during cardiac surgery. Thus, administration of volatile anesthetics may represent a novel therapeutic approach that reduces morbidity and mortality associated with perioperative myocardial ischemia and infarction. The mechanisms responsible for APC appear to be similar to those implicated in ischemic preconditioning, but nonetheless have subtle differences. Accumulating evidence indicates that APC is characterized by complex signal transduction pathways that may include adenosine receptors, G proteins, protein kinase C, reactive oxygen species, and sarcolemmal or mitochondrial KATP channels. Opioid analgesics may further enhance APC as well. This article will review recent advances in the understanding of mechanisms responsible for volatile anesthetic-induced myocardial protection

    Similar works