research

Heat and mass transfer investigation of rotating hydrocarbons droplet which behaves as a hard sphere

Abstract

AbstractThe steady state boundary layer equations around rotating pure hydrocarbon droplet are solved numerically. The droplet is simulated to behave as a hard sphere. The transfer equations are discretized using an implicit finite difference method where Thomas algorithm solves the system of algebraic equations. Moreover, dimensionless parameters of heat and mass transfer phenomena around a rotating hexane droplet concluded. The thickness of the boundary layer is unknown for this model and therefore, it is determined. Further, this work proposes correlations of Nusselt and Sherwood numbers for monocomponent hydrocarbon droplets in evaporation. These correlations consider the rotation phenomena and further, the variation of the thermophysical and transport properties in the vapour phase

    Similar works