Performance Comparison of Different Speed Estimation Techniques in Sensorless Vector Controlled Induction Motor Drives

Abstract

Field-oriented control and direct torque control are fast becoming necessities of modern industrial setups for induction motor drive control. Induction motors are considered as the beginning part to create any electrical drive system to be subsequently utilized for several industrial requirements. So now a day due to its high application the need to control the performance of the induction motor is gaining importance. In modern control system, IM is analyzed by different mathematical models mainly depending on its applications. Vector control method is suitably applied to induction machine in 3-phase symmetrical or in 2-phase unsymmetrical version. For vector control IM is realized as DC motor having its characteristics. This dissertation work is aimed to give a detailed idea about the speed control and variations in an induction motor through vector control technique thereby showing its advantage over the conventional scalar method of speed control. It also focusses on the speed estimation techniques for sensorless closed loop speed control of an IM relying on the direct field-oriented control technique. The study is completed through simulations with use of MATLAB/Simulink block sets allowing overall representation of the whole control system arrangement of the Induction motor. The performance of different sensorless schemes and comparison between them on several parameters like at low speed, high speed etc. is also provided emphasizing its advantages and disadvantages. The analysis has been carried out on the results obtained by simulations, where secondary effects introduced by the hardware implementations have not been considered. The simulations and the evaluations of different control techniques are executed using parameters of a 50 HP, 60 Hz induction motor which is fed by an inverter

    Similar works