Abstract

Splicing dysregulation is one of the molecular hallmarks of cancer. However, the underlying molecular mechanisms remain poorly defined. Here we report the splicing factor RBM4 suppresses proliferation and migration of various cancer cells by specifically controlling cancer-related splicing. Particularly, RBM4 regulates Bcl-x splicing to induce apoptosis, and co-expression of Bcl-xL partially reverses the RBM4-mediated tumor suppression. Moreover, RBM4 antagonizes an oncogenic splicing factor, SRSF1, to inhibit mTOR activation. Strikingly, RBM4 expression is dramatically decreased in cancer patients, and RBM4 level is positively correlated with improved survival. In addition to providing mechanistic insights of cancer-related splicing dysregulation, this study establishes RBM4 as a tumor suppressor with therapeutic potentials and clinical values as a prognostic factor

    Similar works