Parameterization of the turbulent diffusion coefficient of industrial emissions

Abstract

Turbulent diffusion of industrial emissions is one of the main transport mechanisms that determine the spatial distribution of pollutants in the atmospheric boundary layer. One of the famous ways to study the basic laws of the spatial distribution of the contaminant is a mathematical modeling of the transport of particles in the air. A diffusive-convective transport model had got wide recognition. A parameter of the diffusive-convective transport model is a vertical eddy diffusion coefficient k[z]. In the simulation of vertical transport impurities the parameterization of turbulent diffusion coefficient is often used in the form: k[z]=k[pr] * z. A parameter k[pr] essentially depends on roughness and temperature heterogeneity of the underlying surface, convective flow and disperse composition impurities. Due to the complexity of the turbulence diffusion processes, adequate description of the vertical transporting is not possible without the involvement of the models, based on experimental materials. In this paper we propose the parameter describing the turbulent diffusion of industrial emissions determinate like solving an inverse problem on the distribution of the contaminant measured along a certain direction from a point source. The content of harmful substances in the air is relatively small, especially at a considerable distance from the source. Therefore, to measure the distribution of the contaminant it is advisable to use the method of moss-biomonitors, exposure time of which is determined by the length growth of moss and it is a year or more. The method is widely used to study air pollution by heavy metals (HM)

    Similar works