research

Effect of terbutaline on hyperpnoea-induced bronchoconstriction and urinary club cell protein 16 in athletes

Abstract

This article is made available through the Brunel Open Access Publishing Fund and is distributed by the Creative Commons CC-BY 3.0 license, under which all are free to reuse or distribute the article under the condition that this original publication must be cited.Repeated injury of the airway epithelium caused by hyperpnoea of poorly conditioned air has been proposed as a key factor in the pathogenesis of exercise-induced bronchoconstriction (EIB) in athletes. In animals, the short-acting β2-agonist terbutaline has been shown to reduce dry airflow-induced bronchoconstriction and the associated shedding of airway epithelial cells. Our aim was to test the efficacy of inhaled terbutaline in attenuating hyperpnoea-induced bronchoconstriction and airway epithelial injury in athletes. Twenty-seven athletes with EIB participated in a randomized, double-blind, placebo-controlled, crossover study. Athletes completed an 8-min eucapnic voluntary hyperpnoea (EVH) test with dry air on two separate days 15 min after inhaling 0.5 mg terbutaline or a matching placebo. Forced expiratory volume in 1 s (FEV1) and urinary concentration of the club cell (Clara cell) protein 16 (CC16, a marker of airway epithelial perturbation) were measured before and up to 60 min after EVH. The maximum fall in FEV1 of 17 ± 8% (SD) on placebo was reduced to 8 ± 5% following terbutaline (P < 0.001). Terbutaline gave bronchoprotection (i.e., post-EVH FEV1 fall <10%) to 22 (81%) athletes. EVH caused an increase in urinary excretion of CC16 in both conditions (P < 0.001), and terbutaline significantly reduced this rise (pre- to postchallenge CC16 increase 416 ± 495 pg/μmol creatinine after placebo vs. 315 ± 523 pg/μmol creatinine after terbutaline, P = 0.016). These results suggest that the inhalation of a single therapeutic dose of terbutaline offers significant protection against hyperpnoea-induced bronchoconstriction and attenuates acute airway epithelial perturbation in athletes.World Anti Doping Agenc

    Similar works