The Evaluation of Fatigue Caused by Plane-Bending Stress on Stainless Steel Using the Stacked-Coil Type Magnetic Sensor

Abstract

To prevent an accident due to the metal degradation of stainless steels, we have previously proposed fatigue evaluation methods (such as the remnant magnetization method using a thin-film flux-gate magnetic sensor [1] and the inductance method using a pan-cake type coil [2]). These two fatigue evaluation methods demonstrated a good correlation between the magnetic sensor output signal and the amount of plane-bending fatigue damage in stainless steels. We developed a stacked-coil type magnetic sensor shown in Fig. 1(a) in order to achieve a magnetic sensor for an accurate fatigue evaluation. This magnetic sensor was composed of two detection coils that are connected differentially, an excitation coil, and a ferrite core. Fig. 1(b) shows the connection of the excitation coil and the two detection coils. Fig. 2 shows the detection result of fatigue and crack using this magnetic sensor. The material used for this specimen was an austenitic stainless steel (SUS304), and plane-bending stress was applied. From Fig. 2, it can be seen that this magnetic sensor detected defects well. The evaluation results of plane-bending fatigue damage distribution will be shown in in detail the complete paper

    Similar works