Inhomogeneous essential boundary conditions must be carefully treated in the formulation of Reduced Order Models (ROMs) for non-linear problems. In order to investigate this issue, two methods are analysed: one in which the boundary conditions are imposed in an strong way, and a second one in which a weak imposition of boundary conditions is made. The ideas presented in this work apply to the big realm of a posteriori ROMs. Nevertheless, an a posteriori hyper-reduction method is specifically considered in order to deal with the cost associated to the non-linearity of the problems. Applications to nonlinear transient heat conduction problems with temperature dependent thermophysical properties and time dependent essential boundary conditions are studied. However, the strategies introduced in this work are of general application.Fil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Institució Catalana de Recerca i Estudis Avancats; España. International Center for Numerical Methods in Engineering; Españ