research

Disorder effects on the static scattering function of star branched polymers

Abstract

We present an analysis of the impact of structural disorder on the static scattering function of f-armed star branched polymers in d dimensions. To this end, we consider the model of a star polymer immersed in a good solvent in the presence of structural defects, correlated at large distances r according to a power law \sim r^{-a}. In particular, we are interested in the ratio g(f) of the radii of gyration of star and linear polymers of the same molecular weight, which is a universal experimentally measurable quantity. We apply a direct polymer renormalization approach and evaluate the results within the double \varepsilon=4-d, \delta=4-a-expansion. We find an increase of g(f) with an increasing \delta. Therefore, an increase of disorder correlations leads to an increase of the size measure of a star relative to linear polymers of the same molecular weight.Comment: 17 pages, 7 figure

    Similar works