Recently, translation systems based on neural networks are starting to compete with systems based on phrases. The systems which are based on neural networks use vectorial repre- sentations of words. However, one of the biggest challenges that machine translation still faces, is dealing with large vocabularies and morphologically rich languages. This work aims to adapt a neural machine translation system to translate from Chinese to Spanish, using as input different types of granularity: words, characters, bitmap fonts of Chinese characters or words. The fact of performing the interpretation of every character or word as a bitmap font allows for obtaining more informed vectorial representations. Best results are obtained when using the information of the word bitmap font.Postprint (published version