research

On the Hardness of Entropy Minimization and Related Problems

Abstract

We investigate certain optimization problems for Shannon information measures, namely, minimization of joint and conditional entropies H(X,Y)H(X,Y), H(XY)H(X|Y), H(YX)H(Y|X), and maximization of mutual information I(X;Y)I(X;Y), over convex regions. When restricted to the so-called transportation polytopes (sets of distributions with fixed marginals), very simple proofs of NP-hardness are obtained for these problems because in that case they are all equivalent, and their connection to the well-known \textsc{Subset sum} and \textsc{Partition} problems is revealed. The computational intractability of the more general problems over arbitrary polytopes is then a simple consequence. Further, a simple class of polytopes is shown over which the above problems are not equivalent and their complexity differs sharply, namely, minimization of H(X,Y)H(X,Y) and H(YX)H(Y|X) is trivial, while minimization of H(XY)H(X|Y) and maximization of I(X;Y)I(X;Y) are strongly NP-hard problems. Finally, two new (pseudo)metrics on the space of discrete probability distributions are introduced, based on the so-called variation of information quantity, and NP-hardness of their computation is shown.Comment: IEEE Information Theory Workshop (ITW) 201

    Similar works

    Full text

    thumbnail-image

    Available Versions