We have performed angle-resolved photoemission spectroscopy of Co-based
boride superconductor LaCo1.73Fe0.27B2 (Tc = 4.1 K), which is isostructural to
the 122-type Fe-pnictide superconductor with the pnictogen atom being replaced
with boron. We found that the Fermi level is located at a dip in the density of
states (DOS) in contrast to Co-pnictide ferromagnets. This reduction in DOS
together with the strong Co 3d-B 2p covalent bonding removes the ferromagnetic
order and may cause the superconductivity. The energy bands near the Fermi
level show higher three dimensionality and a weaker electron-correlation effect
than those of Fe pnictides. The Fermi surface topology is considerably
different from that of Fe pnictides, suggesting the difference in the
superconducting mechanism between boride and pnictide superconductors.Comment: 5 pages, 4 figure