Setting per-field normalisation hyper-parameters for the named-page finding search task


Per-field normalisation has been shown to be effective for Web search tasks, e.g. named-page finding. However, per-field normalisation also suffers from having hyper-parameters to tune on a per-field basis. In this paper, we argue that the purpose of per-field normalisation is to adjust the linear relationship between field length and term frequency. We experiment with standard Web test collections, using three document fields, namely the body of the document, its title, and the anchor text of its incoming links. From our experiments, we find that across different collections, the linear correlation values, given by the optimised hyper-parameter settings, are proportional to the maximum negative linear correlation. Based on this observation, we devise an automatic method for setting the per-field normalisation hyper-parameter values without the use of relevance assessment for tuning. According to the evaluation results, this method is shown to be effective for the body and title fields. In addition, the difficulty in setting the per-field normalisation hyper-parameter for the anchor text field is explained

    Similar works