research

Popular Matchings in the Capacitated House Allocation Problem

Abstract

We consider the problem of finding a popular matching in the Capacitated House Allocation problem (CHA). An instance of CHA involves a set of agents and a set of houses. Each agent has a preference list in which a subset of houses are ranked in strict order, and each house may be matched to a number of agents that must not exceed its capacity. A matching M is popular if there is no other matching M′ such that the number of agents who prefer their allocation in M′ to that in M exceeds the number of agents who prefer their allocation in M to that in M′. Here, we give an O(√C+n1m) algorithm to determine if an instance of CHA admits a popular matching, and if so, to find a largest such matching, where C is the total capacity of the houses, n1 is the number of agents and m is the total length of the agents’ preference lists. For the case where preference lists may contain ties, we give an O(√Cn1+m) algorithm for the analogous problem

    Similar works