Alterungsanalyse komplexer analoger integrierter Schaltungen aus Systemsicht

Abstract

The design of analog circuits ranges from the specifications on system level, the selection of a suitable circuit topology up to the choice of the concrete physical dimensions of components like transistors. The individual steps are performed within computer-aided design environments. These environments are based on a database made available by the semiconductor manufacturers containing process parameters and influences on the components. In particular, the influences to be considered in the design have increased in recent years due to the continuous reduction of the producible structural sizes. Thus, it must be possible to analyze the deviations due to process, temperature, time degradation and, for special applications, radiation influences during the design phase. Conventional approaches regard these additional effects as standing next to the actual design process. As a result, the latter is no longer consistent and it is much more complex to consider different circuits and effects on different abstraction levels within the design flow. The focus of this work lies on the development of a consistent consideration of process, voltage, temperature, aging and radiation influences (PVTAR) during the entire design process of analog circuits to the initial measurement of manufactured circuits. To achieve this goal, a transistor model was extended by the influences to be considered. Thereby, the analysis of the additional effects is seamlessly integrated into conventional design processes and methods. In addition, the possibility of a structured analog design is evaluated. This approach allows the estimation of PVTAR influences on dedicated analog function blocks and their propagation on circuit level. Thus, the enormous simulation effort associated with aging analyses can be reduced. The design and manufacture of circuits is always followed by the measurement of the core properties of these circuits. In the context of this work a method was developed which makes it possible to use all insights from the design of a circuit for the improvement of the measuring results. In addition, the internal parameter sets of individual components can be inferred from the terminal behavior of circuits and systems. Finally, the results of the measurement method can be used for the automated calculation of circuit reliability parameters

    Similar works