Wetting phenomena of grooves at liquid metal/ceramics interface

Abstract

The grain boundary groove (GBG) developing at the ceramic substrate under the liquid metal is evident, yet not fully explained influencing appearance in describing the wetting phenomena at liquid metal/ceramics interface. The focus here is on modeling of the phenomena at/around a groove between grains depending on grooves’ geometry. Based on atomic force microscopy results, the groove efficiency assessment is provided as a function of the transferred mass quantity and related to grooves geometry. The transferred mass quantity and, according to it, the groove efficiency at parabolic GBG is about 10 % higher comparing to the triangular GBG

    Similar works