Magnetic components and microfluidics optimization on a Lab-on-a-chip platform

Abstract

Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas), Universidade de Lisboa, Faculdade de Ciências, 2017Desde 1934, quando Moldovan criou o primeiro instrumento que poderia ser descrito como um citómetro de fluxo, este equipamento tornou-se um importante componente em várias especialidades dentro do laboratório clínico para o diagnóstico, prognóstico e monitorização de um número incontável de doenças. Esta tecnologia biofísica suspende entidades biológicas num fluxo de fluido, sinalizando-as usando reconhecimento biomolecular, para depois as detetar através de um aparelho de detecção eletrónica. Com o crescimento das técnicas de fabricação de semicondutores e microfluídos, foram e continuam a ser feitas muitas tentativas de criar citómetros de fluxo do tipo Lab-on-a-Chip (LOC), o que certamente irá afastar os equipamentos usados hoje me dia nos laboratórios por equipamentos usados in situ de custo e tamanho reduzidos, portáteis e sem necessidade de pessoal especializado. Após uma revisão bibliográfica das técnicas e princípios de funcionamento dos equipamentos já existentes foi possível perceber que a utilização de partículas magnéticas (PM) pode ter várias vantagens quando comparadas com o uso convencional de deteção por fluorescência, removendo assim a necessidade de integrar e alinhar componentes ópticos, permitindo uma medição direta e a construção de um citómetro de fluxo LOC com preparação, separação e deteção de amostras totalmente magnético. No INESC-MN foi feito um protótipo que permite a deteção de um tipo de PMs em tempo real a velocidades da ordem de cm/s usando sensores magnetoresistivos integrados em canais microfluídicos mas a primeira demonstração desta técnica para aplicações de citómetro foi realizada através da detecção de células Kg1-a marcadas com PMs de 50 nm que passaram, através de um canal microfluídico, sobre 3 sensores magnetoresistivos demonstrando que, para amostras de elevada concentração, pode ter a mesma eficiência que um hemocitómetro, mas com menor erro. Tendo como ambição um dispositivo LOC capaz de contar várias entidades biológicas na mesma amostra, um módulo de contagem com vários canais paralelos é necessário. Nesse sentido, foi projetado um novo chip com 4 colunas separadas por 3 mm, cada uma com 7 sensores do tipo válvula de spin (SV) com uma área de deteção de 100x4 μm2 distanciados 150 μm uns dos outros. Os sensores são abordados individualmente por uma linha de corrente de alumínio de 300 nm e passivados com 300 nm de nitreto de silicio. Alinhados com as colunas de sensores, 4 canais de polydimethylsiloxane (PDMS) com uma secção de 20 μm de altura e 100 μm de largura foram irreversivelmente colados ao chip por ultravioleta-ozono (UVO) criando o canal onde a amostra irá fluir. Para que as PMs sinalizem a sua passagem é necessário colocá-las sob um campo magnético forte o suficiente para induzir a sua magnetização e para que, consequentemente, as PMs emanem um campo marginal significativo. Aproveitando a insensibilidade das SVs às componentes perpendiculares ao seu plano (xy), aplica-se um campo magnético nesse sentido (z) para magnetizar as partículas. As PMs ao passarem sobre o sensor geraram um sinal bipolar devido ao campo marginal criado pela sua magnetização perpendicular. Como é apresentado na simulação do sinal, a amplitude do mesmo depende apenas da altura da partícula em relação ao sensor e da magnetização das mesmas, idealmente, uma saturação da magnetização das partículas e o máximo de proximidade aos sensores geraria a maior amplitude possível. O campo magnético perpendicular foi criado usando um magnete de neodímio posicionado sob a placa de circuito impresso (PCB), onde o chip do citómetro é colado e as ligações entre o chip e a PCB soldadas por ultrassons com fio de alumínio. Na abordagem usada em Loureiro et al., 2011, um magnete de 20 mm x 10 mm x 1 mm foi simplesmente colado sob a PCB, mas devido aos campos magnéticos serem sempre fechados as componentes x e y criam desvios nas curvas de transferência dos sensores deixando apenas 1 ou 2 sensores de uma coluna do chip operacionais. Numa abordagem seguinte foi usado um magnete 20 mm x 20 mm x 3 mm distanciado 2 cm abaixo da PCB, isto tornou as curvas de transferência dos sensores adequadas para medição, mas fez com que a componente z do campo magnético não fosse grande o suficiente para que as PMs emanassem um campo magnético suficientemente forte. Percebendo as falhas de cada uma das configurações anteriores, foram feitas simulações do campo magnético que iria influenciar o chip originado por magnetes de vários tamanhos a várias distancias para perceber qual conseguiria fornecer uma maior área em que as componentes x e y fossem menores que 10 Oe e em que a componente z fosse de pelo menos 1 kOe. Através das simulações foi concluído que o magnete de 20 mm x 10 mm x 1 mm o mais próximo possível do chip seria a melhor solução, mas que um alinhamento preciso seria necessário. Para esse fim, foi fabricado numa fresadora um sistema de alinhamento em PMMA. Para que o alinhamento fosse o correto foram feitos 4 furos de alinhamento no sistema de PMMA e na PCB e para reduzir a distancia ao máximo foi feita uma bolsa na PCB da mesma área que o chip deixando a distancia do magnete aos sensores de 1 mm (0.3 mm de PCB + 0.7 mm de substrato de silício). Com isto, o alinhamento em x foi conseguido, mas para alinhar em y foi criado um trilho no sistema de PMMA onde o magnete pudesse deslizar, controlando-o pela rotação de um parafuso com passo de 0.5 mm. Para colocar o magnete na posição ideal, foi medida consecutivamente a curva de transferência do 4º sensor de uma das colunas, num campo magnético de -141 Oe a 141 Oe, até que este tivesse um campo de acoplamento efectivo (Hf) de aproximadamente 0 Oe, o que significa que a curva de transferência estaria perfeitamente centrada em zero e criaria um sinal bipolar perfeito. Após o alinhamento e posicionamento do magnete, todos os sensores foram caracterizados e, nesses resultados, podemos ver perfeitamente o efeito das componentes x e y do magnete. Com o lado longo do magnete paralelo ao lado longo das SVs e alinhado de forma que o Hf fosse o mais próximo de 0 Oe no 4º sensor de uma coluna, percebemos que a componente x (lado longo) do campo magnético criado pelo magnete tem efeitos na sensibilidade dos sensores fazendo com que esta caia à medida que nos afastamos do centro do magnete. Enquanto que a componente y tem efeitos sobre o Hf dos sensores tornando-o mais positivo à medida que medimos a 3ª, 2ª e 1ª linha de sensores e tornando-o mais negativo quando medimos a 5ª, 6ª e 7ª linha. São também apresentadas simulações dos canais microfluídicos para perceber como a velocidade das partículas afeta o sinal e qual a velocidade máxima permitida para que placa de aquisição eletrónica seja capaz de o detetar. Com estas conclusões, um novo chip foi desenhado e fabricado. Neste novo chip a distância entre as colunas de SVs foi reduzida para apenas 1 mm, o que obrigou também à alteração dos canais microfluídicos, ao tamanho do chip e da estrutura de PDMS. Também são apresentadas simulações que mostram que se um segundo magnete, alinhado com o primeiro, for colocado sobre os canais microfluídicos poderá melhorar a magnetização e a homogeneidade do campo, o que permitirá que os 4 canais tenham a mesma sensibilidade e um desvio padrão de Hf menor. Todos os antecedentes teóricos, os métodos de microfabricação e técnicas de caracterização usados são apresentados e descritos.The diagnosis, prognosis and monitoring of diseases serves for the only purpose of preserving and improving life. Being this the greatest objective of the human kind, since ever that efforts have been made to better our ways to do that. One of those, a very important component in several specialties within the clinical laboratory is the flow cytometer, a biophysical technology which uses biomolecular recognition to sort and count biological entities by suspending them in a stream of fluid and detecting them through an electronic detection apparatus. The improvement of the semiconductor and microfluidic fabrication techniques have created the chance to bring the expensive, specialized and bulky equipment out of the laboratories and generate new machines able of having the same efficiency but with smaller price, size, allowing portability and removing the need for specialized personnel. This is the concept behind the next generation of in pointof- care apparatus, the La-on-a-Chip (LOC). At INESC-MN it is understood the potential that magnetic particles (MP) have in a LOC flow cytometer and as such a real-time detection of single magnetic particles magnetoresistive based cytometer was prototyped. Demonstration of this technique for cytometer applications was accomplished by indicating that for high concentration samples it can have the same efficiency as the hemocytometer method but with lesser error. This thesis has as objective the optimization of the magnetic and microfluidic components of a LOC to allow the parallelization of measurements and enabling the real-time measurement of different particles at the same time. For this purpose, a bibliographic review of the theoretical backgrounds, of the fabrication and characterization techniques, of the different detecting principles and of the already existing magnetoresistive counting modules was made to get a deeper understanding of the optimization possibilities. The present work describes the above-mentioned platform for dynamic detection of magnetic labels with a magnetoresistive based flow cytometer, where a permanent magnet is used to magnetize the labels enabling them to trigger the sensor. Several simulations of the magnetic fields created by the permanent magnet and the microfluidic channels were done and analyzed in order to characterize the MPs signal, understand which would be the best positioning of these components and which fluid velocities would be in the range of the electronic read-out capabilities. This study led to the fabrication of a micromachined polymethylmethacrylate (PMMA) alignment system to correctly position the permanent magnet under the cytometer’s chip. This made the control over the magnet’s positioning more sensible and thus reducing the influence of its unwanted magnetic components on the chip. The approximation of the magnet to the chip enhanced the signal by optimizing the MPs magnetization and consequently the signal amplitude, the precise alignment corrected the sensors response by improving its sensitivity and removing them from saturation states. Through this new setup all the sensors in the chip became operational. Finally, using the several techniques of microfabrication also describe in this thesis, a new chip was designed and fabricated to improve even more the sensors sensitivity and consequently augment the number of the cytometer’s counting channels

    Similar works