CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
research
Photocatalytic degradation and mineralization of diazinon in aqueous solution using nano-TiO2(Degussa, P25): kinetic and statistical analysis
Authors
H. Asgharnia
Y. Dadban Shahamat
+3 more
A. Esrafili
M. Farzadkia
R.R. Kalantary
Publication date
1 January 2015
Publisher
Taylor and Francis Inc.
Abstract
Abstract: In this study, photocatalytic degradation of diazinon was investigated using nano-TiO2, Degussa P25, as a photocatalyst and the effects of some operational parameters such as aeration, pH, photocatalyst concentration, and the irradiation time were also examined. Dispersive liquid-liquid microextraction technique was used to extract and pre-concentration of residual diazinon from the liquid samples and all experiments were carried out by gas chromatography. Amount of degradation and mineralization were determined by gas chromatograph with flame ionization detector (GC/FID) and COD measurements, respectively. The optimum condition for degradation of diazinon has been obtained in the pH 6, [nano-TiO2] = 0.2 g/L, and [time] = 120 min. In the optimal condition the removal efficiency of diazinon and COD were 99.64 and 65%, respectively. The results have shown that the nano-TiO2, aeration and time of reaction have a positive effect on photocatalytic degradation of diazinon and COD removal. Statistical analysis showed that the maximum removal of diazinon and COD were due to UV irradiation (71%, 41%), exposure time (16%, 39%), aeration (7%, 4%), and increased concentration of nano-TiO2 (0.4%, 2%), respectively; and the kinetics of photodegradation were found to follow a first-order kinetic model and the constant rate, at optimal condition, was 0.038 (min−1). © 2014 Balaban Desalination Publications. All rights reserved
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Golestan University of Medical Sciences Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.goums.ac.ir:4857
Last time updated on 12/04/2017