The blue mussel Mytilus edulis maintains a strong attachment to the substrate in high energy environments by producing byssal threads. On the shores of Rhode Island, USA, mussel attachment strength increases twofold in spring compared to that in the fall. While many factors could influence attachment strength (temperature, food supply, predator cues, etc.), it has been proposed that the variation observed is primarily due to increased thread production during winter and spring in response to increased wave action. This study evaluates the influence of three aspects of wave action on the thread production of M. edulis. Mussels were exposed to flow, acceleration and byssal loading stimuli and the subsequent number of byssal threads produced in the laboratory was monitored. Increased flow elicited the strongest response, significantly decreasing thread production in mussels. This result was confirmed in flume experiments exposing mussels to a range of flows, with reduced thread production above 15 cm s–1. The influence of both acceleration and byssal loading was sporadic and inconsistent across seasons. Surprisingly, overall thread production in the laboratory was lowest in winter, a time when mussels typically peak in attachment. A similar seasonal pattern was observed in field assays, with high thread production during periods of elevated temperature, reduced wave action, and high reproductive condition. These results suggest that seasonal variation in attachment strength does not reflect increased thread production in response to wave action, and that other possible factors, such as seasonal variability in both the material properties of byssal threads and thread decay rates, warrant further investigation